
Modernize Your Way to a Next 
Generation Technology 
Capability

Overview

It is obvious to many that the technology elastic has finally snapped at a 
lot of firms, and the innovation and efficiency gains of modern tech vs 
last-generation builds is just too great to ignore. The tech agility 
required to navigate a post-pandemic data-driven world means firms 
can no longer ignore the risks of continuing to put off the inevitable.

So, if now is the time to invest in your next-generation system, how 
should you go about it? And what are you trying to achieve?

Historically, the path forward would be a bold “rip and replace” style 
operation. Today, modernization offers a different approach with many 
benefits. 

The modernization approach described in this paper, implies 
incremental improvement that maximizes the benefit of existing (legacy) 
systems rather than a big bang. Importantly, it can deliver very rapid 
outcomes, especially in terms of ability to innovate. It also allows for a 
more flexible cadence where other priorities can interrupt as needed. 
The cadence and order in which things get done is now at your 
discretion and can be tailored to fit in with changing business 
imperatives.

With a vCore based architecture that wraps-and-extends your existing 
systems, it not only empowers your business with a succession of quick 
wins but allows you to tackle a massive effort in chunks without 
requiring everything else on the to-do list to grind to a halt.

Copyright ©2021, All rights reserved.

White Paper



Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

vCore Concepts
vCore is an application development platform that 
enables Java development teams to accelerate 
the build of high-performance, user-facing 
systems. It combines a proprietary streaming 
database and transactional engine, a custom web 
stack that can handle high performance loads with 
specialized “low/no code” accelerators that enable 
developers to maximize the time they spend 
building functionality.

Data Centric
vCore by default is a data centric architecture 
which is achieved by maintaining a highly 
available, highly resilient single data cache. Any 
system built on vCore will natively support 
collaboration and cross-system workflows as all 
data is read and writable in one shared location. 

Schema Driven
vCore keeps the data model (schema) separate from the application so it can change as needed. 
The core API is code generated at build time. It’s these material gains in improving your ability to 
change or shorten the innovation cycle that deliver sustained advantage.

Event-based Programming
As a developer, being able to efficiently deal with the propagation of change events through a high-
performance real-time platform is vital for both an efficient development experience and achieving a 
responsive user experience. vCore achieves this by building on many of the concepts found in 
Reactive Programming. 
Reactive programming is an asynchronous programming paradigm concerned with data streams and 
the propagation of change, enabling developers to write code that can react to state changes quickly. 
Asynchronous processing pipelines send data to a consumer as it becomes available. Events are 
captured asynchronously, by observer functions that execute when a value is emitted. The stream is 
the subject (or “observable”) being observed.

Benefits of the vCore Reactive Approach
 Improves user experience : its asynchronous nature and ability to control and handle 

backpressure mean that you will create a more responsive product for your users to interact with.
 Faster development : functions (blocks of code) can be added or removed from individual data 

streams, which means you can easily amend and reuse.
 Easier threading : provides a more intuitive and easier to use model for all types of threading 

issues.
 Full-stack : streams propagate change all the way to the UI.
 Supportable : streams are transparent and inspected/edited at runtime.

2

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Cases
In this section we discuss 3 different business cases where a vCore modernization approach can be 
used. 
1. System Consolidation {“Strangler Pattern”}
2. Consolidated Web Enabled User Interface
3. “Building on Top” with Data Centralization

vCore Flow Diagrams are a convenient way to explain conceptually how the underlying technology 
actually works. Flow Diagrams, break up the processing of datastreams into 3 logical layers.

External Output

Application Layer

Data Layer

Platform
 Layer

External Input

Application Layer

Platform
 Layer

Data Layer
A proprietary streaming database and transactional engine. For 
clarity we re-use SQL idioms for convenience when defining the 
data schema itself. The runtime API is code-generated and our 
“data-in-motion” paradigm, gives the developer up-to-date 
transactional and streaming data, when and where needed.

Application Layer
Specialized full-stack adaptions of “low/no code” accelerators. 
Low/No-Code tools do not work for high performance mission 
critical software. We have adapted some of the underlying 
techniques, such as model-driven development (MDD) and code 
generation to work in the high-performance space.

Platform Layer
Contains many of the underlying non-functional components required to stand up a mission-critical 
system. In addition to a custom web stack that can handle high performance loads while reducing the 
amount of hand-crafted code required to stand-up enterprise UI’s, includes support for fine grain 
entitlements and permissions, user configuration management and production support helpers. 

Flow Diagram Examples
To further illustrate how Velox Flow Diagrams work, below are 4 examples describing common 
activities within a vCore implementation:
1. Combining and viewing data streams : Data from a request/reply system API and a real-time 

data feed are injected into vCore, combined and rendered into a web UI. [READ ONLY]

2. User acting on a vCore screen : A UI action is bound to some application code that when 
invoked writes to an external system API. [READ & WRITE]

3. Transforming RDBMS tables: The input data is filtered, additional columns computed on the fly 
and the data is then aggregated. [READ ONLY]

4. Custom datastream processing: As the input data changes, custom code is executed that 
writes to an external system API. [READ & WRITE]

3

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

D
ire

ct
io

n 
of

 d
at

a 
pr

op
ag

at
io

n

Input/Output

Application

Data

Application

Input/Output

Example 1 

Key

Example 2 Example 3 Example 4 

Screen : A combination of tables, values and 
actions rendered within a browser SPA.

View : A rationalized representation that 
stands up information efficiently for readers.

User Interface: Desktop web browser or local 
installl application.
Real-time read/write API : Usually, an external 
system.
Database : Typical RDBS or other well known 
database type.
Data Stream : Usually, a high velocity market 
data feed

Decorator : On-the-fly calc of virtual tables 
and columns for analytics and meta data
Filter : A rationalized representation that 
stands up information efficiently for readers

Aggregation : Column specific methods to 
be used to calc rollups after a pivot action.

Polling: Timer based pull of a request / reply 
interface to a database.

Joins : Streamlined ”JOIN" logic, abstracts 
away complexity of synchronizing sources.
Tables: Logic can be written without explicit 
synchronization with the subscribers.

Code : Application code (including Main) that 
executes business logic

Injector : Split the computational load of a 
join or aggregation across many cpu’s/jvm’s

Action : Act on a resulting data set using 
bound source system API
External component: Either a non-vCore 
front-end or non vCore backend

Key: 

Miscellaneous “Flow Diagram” Examples : Rendering External Datastreams in a vCore UI

4

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

System Consolidation {“Strangler Pattern”}
It is not unusual to be running multiple systems that have a considerable amount of functional overlap. 
At some point it’s likely that these systems will need to be collapsed, either to simplify the user 
workflow, reduce operational costs or to simply reduce overall complexity.
A significant amount of benefit can be gained from being able to tackle the user facing component 
independently from the backends. This has the potential benefit of realizing the business gains quickly 
without making them dependent on complex backend migrations.
This examples shows vCore being used as a general-purpose abstraction layer that connects to n
backends. Application code is written to augment any differences on backend operations to comply with 
the requirements of the single UI. Over time activity in the legacy backends is reduced.

Interim –Partial Flow Migration Final –Max Flow Migration

Backend
1

Backend
n

Backend
1

Backend
n

Initial 

5

Screen : A combination of tables, values and 
actions rendered within a browser SPA.

View : A rationalized representation that 
stands up information efficiently for readers.

User Interface: Desktop web browser or local 
installl application.
Real-time read/write API : Usually, an external 
system.
Database : Typical RDBS or other well known 
database type.
Data Stream : Usually, a high velocity market 
data feed

Decorator : On-the-fly calc of virtual tables 
and columns for analytics and meta data
Filter : A rationalized representation that 
stands up information efficiently for readers

Aggregation : Column specific methods to 
be used to calc rollups after a pivot action.

Polling: Timer based pull of a request / reply 
interface to a database.

Joins : Streamlined ”JOIN" logic, abstracts 
away complexity of synchronizing sources.
Tables: Logic can be written without explicit 
synchronization with the subscribers.

Code : Application code (including Main) that 
executes business logic

Injector : Split the computational load of a 
join or aggregation across many cpu’s/jvm’s

Action : Act on a resulting data set using 
bound source system API
External component: Either a non-vCore 
front-end or non vCore backend

Key: 

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Consolidated Web Enabled User Interface
Whether it be to leverage the deployment advantages of a web browser UI or to replace an old UI 
with one that is more functionally aligned to current business goals, technology teams can often find 
themselves needing to replace the front-end but not the back.
In this example vCore connects into n backends, in some cases. special processing is required in the 
injector to manipulate the data from the external system into a single common data model. 
In addition to a new web-based UI built in vCore, this example shows vCore writing back to the 
backend sources either programmatically or invoked by user action on the UI.

Legacy backends rejuvenated with vCore 

6

Screen : A combination of tables, values and 
actions rendered within a browser SPA.

View : A rationalized representation that 
stands up information efficiently for readers.

User Interface: Desktop web browser or local 
installl application.
Real-time read/write API : Usually, an external 
system.
Database : Typical RDBS or other well known 
database type.
Data Stream : Usually, a high velocity market 
data feed

Decorator : On-the-fly calc of virtual tables 
and columns for analytics and meta data
Filter : A rationalized representation that 
stands up information efficiently for readers

Aggregation : Column specific methods to 
be used to calc rollups after a pivot action.

Polling: Timer based pull of a request / reply 
interface to a database.

Joins : Streamlined ”JOIN" logic, abstracts 
away complexity of synchronizing sources.
Tables: Logic can be written without explicit 
synchronization with the subscribers.

Code : Application code (including Main) that 
executes business logic

Injector : Split the computational load of a 
join or aggregation across many cpu’s/jvm’s

Action : Act on a resulting data set using 
bound source system API
External component: Either a non-vCore 
front-end or non vCore backend

Key: 

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

“Building on Top” with Data Centralization
This example takes aspects of the previous two examples to create a completely new user-facing 
system that sits along side the existing application estate. This is particularly useful when the legacy 
systems are very rich in functionality but only occasionally used. 
The new vCore system covers and modernizes the 80% of functionality that is constantly in use and 
takes advantage of all the data and backend services being in one place to make it possible to 
implement more powerful workflows and functionality.

vCore Enriching and extending the life of legacy systems

7

Screen : A combination of tables, values and 
actions rendered within a browser SPA.

View : A rationalized representation that 
stands up information efficiently for readers.

User Interface: Desktop web browser or local 
installl application.
Real-time read/write API : Usually, an external 
system.
Database : Typical RDBS or other well known 
database type.
Data Stream : Usually, a high velocity market 
data feed

Decorator : On-the-fly calc of virtual tables 
and columns for analytics and meta data
Filter : A rationalized representation that 
stands up information efficiently for readers

Aggregation : Column specific methods to 
be used to calc rollups after a pivot action.

Polling: Timer based pull of a request / reply 
interface to a database.

Joins : Streamlined ”JOIN" logic, abstracts 
away complexity of synchronizing sources.
Tables: Logic can be written without explicit 
synchronization with the subscribers.

Code : Application code (including Main) that 
executes business logic

Injector : Split the computational load of a 
join or aggregation across many cpu’s/jvm’s

Action : Act on a resulting data set using 
bound source system API
External component: Either a non-vCore 
front-end or non vCore backend

Key: 

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Performance Characteristics
vCore achieves high-performance user-facing systems by taking a user-centric approach (top-
down design rather than bottom-up).
This is because in a system that needs to operate over massive fast-moving datasets, with 
humans-in-the-loop, the physical limit of how much information a human can consume vastly 
restricts how much data needs to be calculated and transported from server to client. The 
architecture makes use of this limitation through various techniques:
 Lazy calculations of derived columns that are not visible and are not part of the dependency 

tree of a data element that is visible.
 Data virtualization so only data elements in the viewport need to go on-the-wire.
 Conflation and throttling to an update rate that is humanly digestible.
 Statically defined high-load streaming table operations like aggregations and filters.
 Rapid app dev framework to massively shorten the innovation cycle when new 

aggregations/filters are identified and need to be statically defined.
On this basis, vCore can be used in a wide variety of scenarios. For example, we have run a 
vCore system with ~100MM rows, ~400 columns and sustained update rate of ~500k-1MM rows 
per second. These numbers are not upper limits, and the absolute limits depend on many factors.

100 MM
Number of 

rows in a Velox 
table

10 k
Number of 

updates per 
seconds

100 k
Number of 
concurrent 

browser sessions

5 ms.
Time to pivot 

a grid containing 
1M rows

1
Full-stack front-

office 
development 

platform 

5 yrs.
The amount of 
time the core 

code has been in 
production.

> 100
Grids within a 

single user 
session

> 250
Data sources and 

API’s 
simultaneously 

connected.

8

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Table
Most objects are modeled as either a Table or a Join. A Join is just a nested table with some 
platform added "joining" capability

<table name="TableName">

<field name="fieldName" primaryKey="true"/>

</table>

Join
Equivalent of a relational database left outer join. Unlimited number of tables can be added to the 
Join and this can be streaming / non-streaming etc. The Join operator ensures sources remain 
synchronized.

<join name="JoinName" primary="JoinTableA">

<field type="joinTableB" root="joinFieldName"/>

</join>

Decorated Join
Derived real-time fields can be added via a mechanism which enriches streaming joins with 
calculated fields. These can be defined in the dictionary and refer to pieces of Java code, the Join 
mechanism ensures that these get updated in sync

<join name="JoinName" primary="TableName">

<field name="decoratedField" type="Analytics"

prePublishDecorator="Analytics::calcAnalytics"/>

</join>

View
A projection of the fields from an underlying table which allows: rename of  fields; expose a subset 
of the fields; create a new derived column; set the caption and format; specify aggregation 
function and the way a field should be rendered.

Building Applications
Here are a few fundamental examples to give a flavor of what the vCore developer experience is 
like. Starting with the Data Dictionary, which is probably the most important single concept in the 
platform. The Data Dictionary is how the data domain is separated from the application itself. It is 
effectively the “model” that drives the API code generation process. When using vCore to sit on 
top of multiple legacy datasources/API’s, developers use this opportunity to migrate to one single 
clean data model. 

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Aggregated View

Aka. pivots or group-by or roll-ups. If you want to pivot a Table either programmatically, or if the 
user does it from the UI, then each column in the table has to know how to aggregate itself. In the 
dictionary you can specify whether to use a canned aggregation type (mathematical operator) or 
refer to a custom type that defined in Java code. If the out-of-the-box aggregations 
(min/max/sum/avg etc) are not enough, you can define your own and then make them available to 
all in the Dictionary. Aggregations tell the cache what to do with a column when it is rolled-up as 
part of a user-defined pivot.

<view name="OrderJoin" table="ETOrderJoin“

resultTable="ETOrderJoinAgg">

<column name="side" source="order.side" aggregation="customSet"

<aggregationParameter converter="Aggregate::aggregatedSide"/>

</column>

</view>

public static Aggregate aggregatedSide (Set<Side> sides){}

Screen Table
Represents the view model of the screen. There are three types of control: singlevalue (i.e
text,label), actions (i.e dropdown, checkbox) and grids which are the most powerful and feature 
rich control type on the platform. Highly complex forms can be constructed with combinations of 
these primitive types.

<screen name="ScreenName">

<control name="gridCntrolName" type="datagrid" datatype="TableName“

keytype="Object" viewname="ViewName"/>

<control name="actionControlName" type="action"/>

</screen>

State Table

Holds the state of the business object. The structure of a state looks the same as a table defined 
in the schema. In fact, a state can be used anywhere where a table can be used. If we consider 
the functionalities, a state is basically a superset of a table.

<state name="StateTableName">

<field name="fieldName" primaryKey="true"/>

</state >

<view name="ViewName" table="TableName">

<column name="fieldName" aggregation="SUM“ caption="Field Name"/>

</view

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Command

Similar to a stored procedure. Allows you to define actions that can change one or more state in 
an ACID-compliant manner.

<command name="CommandName">

<field name="fieldName"/>

<result name="resultName" type="ResultType"/>

</command>

Screen Layouts

Along with the dictionary the developer needs to provide HTML5 layout files which provide coarse-
grain placement instructions and style sheets (CSS). HTML5 layout files provide coarse-grain 
placement instructions for visual components. We also use vue.js to interoperate with other web 
components like react and angular.

<div class="ScreenName screen vue">

<div class="button-group"> // dynamic buttons

<button class="btn fieldName flex-1" is="vue-action" v-model=modelName">

<span style="font-size: 14px">Last</span>

<span class="last">{{fieldName.Value}}</span>

</button>

</div>

</div>

Screen Config

HTML5 layout files provide coarse-grain placement instructions for visual components. We also 
use vue.js to interoperate with other web components like react and angular.

"visibleColumns":[{"columnName":"column1"}],

"columnSettings":{"column1": {"displayName":"Column 1", "width":80,

"columnName":"column1"}},

"sorts":[{"columnName":"column1","direction":"DESCENDING"}],

"filters":[{"filterExpression":"( > field1 'value1' )"}]

9

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

// connect to the external data source

var consumer = new KafkaConsumer(kafka top); consumer.subscribe(topics); 

// get a reference to the Velox table

CachePublisher<marketData, ?> marketDataPub = 

m_dc.getPublisher(marketData.class); 

// for each record consumed

while (true) {

// for each field on the record write into the Velox tabl

for (JsonNode MarketDataJsonElement: MarketDataJson) { 

Builder builder = Builder.newBuilder();

Builder.field(getString(JsonElement,"fieldName",null));

}

}

Data Adaptors

Translate and synchronize between external data sources and API’s. You can connect to any 
external source/system that has a Java API. A simple field mapping exercise needs to be 
performed. Allows you do any pre-processing and have complete control of the data access 
methodology

Screen Handlers

For every screen a screenhandler needs to be provided. Each screen provider typically has a 
handle on the global application object where all global data services are accessible from so it's 
convenient to be able to get access to it when writing business logic. If the screen can be 
accessed directly from the launch page, it should be extended from BaseScreenProvider as the 
launch page needs to access basic information such as icon, caption and grouping information for 
this screen.

public class ThisScreenProvider extends BaseScreenProvider<> {

public void create(SessionState state, ClientNotifier clientNotifier) {

// DataContextAccessor is the interface used by the app access to app data

// access all global tables defined in the schema using DataContextAccessor

// sessionState contains the user session information

DataContextAccessor dc = state.getDataContextAccessor(); 

// create the screen. the params are ThreadingContext and grid data sources

final ThisScreen screen = new ThisScreen(state, tablePublisher.getTable());}

}

10

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Type Artefact type Artefact description

XML Full Stack Schema Define the data entities (tables) and their relationships, from data sources to output screen.

HTML/ XML Screen Layout & Config Coarse-grain layout instructions in HTML5 and CSS. Workspaces, grids. 

Java Data Injectors Maps data elements from an external API to Velox table elements; apply pre-processing.

Java Application Logic Business logic, analytics, aggregations, screenhandlers, commandHandlers etc.

Build Process

Physical Architecture
Two discrete service types are deployed as standard binaries. Most applications will run on a single xl 
AWS ECS host .

Appserver
Handles user actions (from the web UI) and all other application logic & processing. High-availability 
and scalability is supported by running sufficient, identical, appservers behind an HTTP load 
balancer. 
The workload on an appserver can vary greatly depending on the usage profile of a particular user. It 
will be up to the developer to work out the most efficient scheme, but generally a smaller than normal 
number of high-powered users will be allocated to a single app server. 
Can also be horizontally scaled (by instrument groups or some other classification) in which case a 
client request would be handled based on group inclusion.

State Engine
Used to handle all the transaction processing that needs to be ACID compliant and for persistent 
storage when data integrity needs to be maintained across system restarts. The state engine is 
generally used in situations where vCore is the master of a particular data set (as in the case of an 
OMS). High-availability and scalability are supported by multiple hot-hot nodes running in a resilient 
fault-tolerant cluster.

11

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

Major International Investment Bank –
Equities Technology

August 2019

Without a multi-purpose development platform to build solutions, the team are constantly re-inventing 
the wheel, building and maturing core application scaffolding, like wrangling disconnected data sources, 
standing up scalable, supportable, testable backends and finessing visual components. 

Out-of-the-box, vCore provides the common components and non-functional attributes that all mission 
critical applications need, but without the limitations that can arise from other development accelerators 
when your problem moves beyond their intended use-cases.

A vCore USP is focusing on the needs of the professional developer. Developers want to work with the 
business framework as they see it as enhancing their skills and output by increasing the amount of time 
spent on differentiating business features. While achieving this without being forcing them into an 
environment that’s unfamiliar and does not leverage their years of software engineering experience.

By centralizing to one core application container and bringing consistency to how and where business 
logic is developed and operated, the benefits can grow over time as more and more code is reused 
between teams.

Project Overview

With only 2 developers, significant progress has been made in terms of business delivery and legacy 
system elimination. 

Highlights

• Many applications are now managed and operated in one place, reducing tech support and 
maintenance costs.

• Apps are all accessible by the user from one place.
• Users can build different workspaces to fit their needs.
• With the underlying data and API’s centralized, it enables higher-level workflows to be built, spanning 

multiple silos.
• Functionality is logically decomposed into services making it easier to modify in the future.

12

mailto:info@veloxfintech.com
mailto:@veloxbuildfast


Linkedin/veloxbuildfasterinfo@veloxfintech.com @veloxbuildfast

About Velox
Velox enables software development teams to build high-performance user-facing systems up to 
10x faster.
The Velox full-stack application development platform (vCore) provides professional developers 
with tools that amplify their expertise in Java and Web programming, allowing them to focus on 
building differentiating business functionality.
Founded in 2018 by 3 veterans of front-office technology, vCore is the catalyst broker dealers, 
investment banks, exchanges and data and tech vendors need to accelerate their digital 
transformation and modernization journey.

13

mailto:info@veloxfintech.com
mailto:@veloxbuildfast

	Modernize Your Way to a Next Generation Technology Capability
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

